Q1: Let $f(x) = (\sin(\tan^{-1}x) + \sin(\cot^{-1}x))^2 - 1$, where |x| > 1. If $dy/dx = 1/2 d/dx(\sin^{-1}(f(x)))$ and $y(\sqrt{3}) = \pi/6$, then $y(\sqrt{3})$ is equal to

(a) $\pi/3$ (b) $2\pi/3$ (c) $-\pi/6$ (d) $\pi/7$

Solution:

 $f(x) = (\sin(\tan^{-1}x) + \sin(\cot^{-1}x))^{2} - 1$ Let $\tan^{-1}(x) = A$ where $A \in (-\pi/2, -\pi/4) \cup (\pi/4, \pi/2)$ => $(\sin(\tan^{-1}x) + \sin(\cot^{-1}x))^{2} - 1 = (\sin A + \cos B)^{2} - 1$ = $1 + 2 \sin A \cos A - 1$ = $\sin 2A$

 $= 2x/(1+x^2)$

Given that, $dy/dx = (1/2) d/dx(sin^{-1}(f(x)))$

 $=> dy/dx = -1/(1+x^2)$ for |x| > 1

(x > 1 and x< -1)

To find the value of $y(-\sqrt{3})$, integrate dy/dx. To integrate the expression, interval should be continuous. So we have to integrate the expression in both the intervals.

 $=>y = -\tan^{-1}x + c_1$ for x>1 and y = $-\tan^{-1}x + c_2$ for x < -1

For x > 1, $c_1 = \pi/2$ [because $y(\sqrt{3}) = \pi/6$]

But c_2 can't be determined as no other information is given for x < -1, so can't determine the value of c_2 . Therefore, all the options can be true.

Q2: If α = 3 sin⁻¹(6/11) and β = 3 cos⁻¹ (4/9) where the inverse trig functions take only the principal values, then the right option is

(a) $\cos\beta > 0$ (b) $\cos(\alpha + \beta) > 0$ (c) $\sin\beta < 0$ (d) $\cos\alpha < 0$

Answer: (b), (c) and (d)

Solution:

 $\begin{aligned} \alpha &= 3 \sin^{-1} (6/11) > 3 \sin^{-1} (6/12) > 3 \sin^{-1} (1/2) > \pi / 2 \\ \beta &= 3 \cos^{-1} (4/9) > 3 \cos^{-1} (4/8) > 3 \cos^{-1} (1/2) > \pi \\ \alpha &+ \beta > 3\pi/2 \\ \sin \beta < 0, \cos \alpha < 0, \cos (\alpha + \beta) > 0 \end{aligned}$

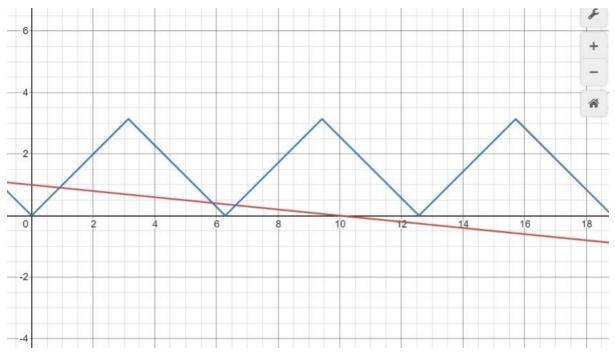
Q3: Let f: $[0, 4\pi] \rightarrow [0, \pi]$ be defined by $f(x) = \cos^{-1}(\cos x)$. The number of points $x \in [0, 4\pi]$ satisfying the equation f(x) = (10-x)/10 is

(a) 1 (b) 2 (c) 3 (d) None of these

Answer: (c)

Solution:

Draw graph for $f(x) = \cos^{-1}(\cos x)$ and f(x) = (10-x)/10



Q3: Let $f(x) = x \cos^{-1}(\sin(-|x|))$, $x \in (-\pi/2, \pi/2)$ then which of the following is true?

(a)
$$f'(0) = -\pi/2$$

(b) f' is decreasing in (- $\pi/2$, 0) and increasing in (0, $\pi/2$)

(c) f is not differentiable at x = 0

(d) f' is increasing in (- $\pi/2$, 0) and decreasing in (0, $\pi/2$)

Answer: (b)

Solution:

$$\begin{split} f(x) &= x \cos^{-1}(\sin(-|x|)) \text{ (Given)} \\ &=> f(x) = x \cos^{-1}(-\sin(|x|)) \\ & \text{[As sine is an odd function]} \\ &=> f(x) = x \left[\pi - \cos^{-1}(\sin(|x|)) \right] \\ &=> f(x) = x \left[\pi - (\pi/2 - \sin^{-1}(\sin(|x|)) \right] \\ &=> f(x) = x(\pi/2 + |x|) \\ &=> f(x) = x(\pi/2 + |x|) \\ &=> f(x) = x(\pi/2 + x) \text{ when } x > 0 \text{ and } f(x) = x(\pi/2 - x) \text{ when } x <= 0 \\ & \text{Therefore, } f'(x) \text{ is decreasing } (-\pi/2, 0) \text{ and increasing in } (0, \pi/2). \end{split}$$